
1

Designing RIA Accessibility:
A Yahoo UI (YUI) Menu Case Study

Doug Geoffray & Todd Kloots

Capacity Building Institute
Seattle, Washington

2006.11.30

2

What’s Happening?

3

Web 1.0 vs. Web 2.0

4

Rich Internet Applications (RIAs)

• RIAs are:
– Web apps with features and

functionality of traditional desktop
applications

– Can be created in various languages:
Flash, JavaScript, Java
• Today’s talk is focused on JavaScript RIAs

5

Web 2.0 Design Philosophy

• “Getting It Right The Second Time” -
Matt Sweeney

• http://yuiblog.com/blog/2006/10/03/video-sweeney-
hackday06/

6

Getting It Right the Second Time

• Use technology as designed
– Example: HTML is a small vocabulary, so choose the

right tags to give the most meaning to your content.

• Do not corrupt layers of the stack
– Examples of what not to do:

• class=“red-button”
• href=“javascript:”

• Create platforms. Evolvability
– Encapsulation, Flexibility, Mashups, Services,

Portability

• Preserve opportunity & availability

7

Preserve opportunity &
availability

8

Accessibility Defined

• Accessibility is:
– “A general term used to describe the

degree to which a system is usable by
as many people as possible without
modification” (cite: Wikipedia)

• Often, our focus is on enabling screen-
readers specifically
– However, the resulting work is

generally more far-reaching

9

So how can we move forward?

10

Three Techniques (Use Them All)

1. Standards-based Development
2. Redundant Interfaces
3. Faithful and Predictable Ports

11

Characteristics of Techniques

• Don’t make things worse
• Provide alternatives
• Learn from other technologies
• Support improvement of a11y tech

12

Standards-Based Development

Don’t miss the opportunity

13

Approach 1:
Standards-Based Development

• Overview and Definition
• Create and stand upon a strong markup

foundation
• Subsequent layers (CSS, JavaScript, etc.)

enhance meaningful and structured markup
• Progressive and unobtrusive enhancement
• Don’t contaminate the neighborhood
• Be generous with markup to provide as

much meaning as possible

14

Standards-Based Development

Example: Menu Structure

<div>
 <div>

 Cut
 Copy
 Paste

 Select All

 Find (on This Page)...

 </div>
</div>

15

Standards-Based Development

Example: Menu Heirarchy
<div>
 <div>

 Item One

 <div>
 <div>

 Item One
 Item Two
 Item Three

 </div>
 </div>

 Item Two
 Item Three

 </div>
</div>

16

<div>
 <div>

 Cut
 Copy
 Paste

 Select All

 Find (on This Page)...

 </div>
</div>

Standards-Based Development

Example: Separators

17

Standards-Based Development

Example: Help Text

<div>
 <div>

 Cut Ctrl + X
 Copy Ctrl + C
 Paste Ctrl + V

 Select All Ctrl + A

 Find (on This Page)... Ctrl + F

 </div>
</div>

18

Standards-Based Development
Example: Titles

<div>
 <div>

<h6> Applications </h6>

 BBEdit
 Firefox 2.0
 Grab

 Microsoft PowerPoint

 <h6> Documents </h6>

 Accessibility

 file.txt

 </div>
</div>

19

Standards-Based Development
Example: Emphasis

<div>
 <div>

 Open
 Explore
 Search…
 Manage

 Map Network Drive..
 Disconnect Network Drive..

...

 </div>
</div>

20

Standards-Based Development

Benefits

• “With the grain” of web technologies
• Truly available to all
• Provides strong foundation
• A step toward a semantic web
• Long shelf life

21

Standards-Based Development

Drawbacks

• Doesn’t solve every problem
• Perceived overhead

– Unobtrusive JavaScript, CSS-based
layouts and Hijax are still less familiar
techniques

22

Standards-Based Development

Drawbacks Example

• “disabled” attribute can be applied to a limited number of
elements in HTML 4:
• <button>
• <input>
• <optgroup>
• <select>

• <textarea>

• This limitation makes it difficult to communicate that an
element in a DHTML widget is disabled

• Existing limitation solved by WAI-ARIA States and Properties
• Example: <li role=“wairole:menuitem”

aaa:disabled="true">Copy

23

Redundant Interfaces
Offer flexible interactions

24

Approach 2:

Redundant Interfaces

• Overview and Definition
• Desktop offers multiple means of input

• Choice of GUI input and command line
• Direct movement of objects vs. configuration-based

movement
• Text fields with option of auto complete
• Support for Tab and arrow keys

• We must bring these redundancies to the web

25

Approach 2:

Redundant Interfaces

• Overview and Definition
• Desktop offers multiple means of

manipulation
• Keyboard and mouse

– Example: Users can close a window by hitting
“Esc” key or by using the close button

• Drag-drop and form-based

• We must bring these redundancies to
the web

26

Redundant Interfaces
Example: Progressive Enhancement

• Lynx: text-only
browser

• No JavaScript
support

• No CSS support
• YUI Menu content

is still meaningful
and menu
hierarchy is well
represented
because it is
based on
semantic markup

27

Redundant Interfaces
Example: Progressive Enhancement

• Netscape 4:
graphical browser
with limited
support for CSS
and JavaScript

• YUI Menu content
is still meaningful
and menu
hierarchy is well
represented
because it is
based on
semantic markup.

28

Redundant Interfaces
Example: Progressive Enhancement

• Firefox has
excellent support
for CSS and
JavaScript

• Paranoid users
might disable
JavaScript

• YUI Menu content
is still meaningful
and menu
hierarchy is well
represented
because it is
based on
semantic markup

29

Redundant Interfaces
Example: Progressive Enhancement

• IE also has
excellent
support for
CSS and
JavaScript

• CSS and
JavaScript can
work together
to transform
the experience
without
sacrificing the
content

30

Progressive Enhancement
Summary

• Semantic markup makes content portable
• Progressive enhancement allow for the

development of redundant interfaces that
give users a choice
– Text only interface: Lynx and Netscape 4
– Rich, DHTML interface: Firefox and IE

31

Redundant Interfaces
Example: Multiple Task Flows

Communication

PIM

Mail

• Site should be to be navigated
without DHTML

• Give users a choice
• DHTML menus gives the user the

option of skipping steps

32

Redundant Interfaces
Example: Keyboard & Mouse Support

33

Keyboard & Mouse Support
Roaming tabindex=“0” technique

• Start out with tabindex=“-1” on all child items
except for first, which gets
tabindex=“0”

• As user arrows around, reset previously
focused item item to tabindex=“-1”

• Set newly focused item to tabindex=“0”
• Works with Firefox and IE
• More at:

http://developer.mozilla.org/en/docs/Key-
navigable_custom_DHTML_widgets

34

Redundant Interfaces
Example: Screen Reader Support

• Inline images with alt
text: “Collapsed. Click
to expand.”

• “click” event handler
hides and shows
submenu

• When submenu is
made visible, content is
focused and image alt
text is updated:
“Expanded. Click to
collapse.”

Focused

35

Redundant Interfaces
Example: Screen Reader Support

• Inline image with alt
text: “Checked.”

• Appended after the
text node of the
element

• Positioned via CSS
for traditional look
and feel

 Status Bar

36

Redundant Interfaces
Example: Screen Reader Support

• Learnings:
– Use inline images over background

images when appropriate
– Screen readers respect CSS “visibility”

and “display” properties
– Set focus to new content that is made

visible or appended to the page via
DOM methods

37

Redundant Interfaces

Benefits

• Better for everybody
– Keyboard is important just as important

as mouse
– Let users choose from multiple task

flows

• Transfer the complete set of
expectations from the desktop to the
browser

38

Redundant Interfaces

Drawbacks

• Insufficient communication with accessibility
APIs on the desktop

• Dual experiences/interfaces may pressure
goals of parity

• Requires development of two experiences
• But not 2x effort!

• Can actually benefit development
process

39

Faithful and Predictable Ports

Preserve the illusion

40

Approach 3:
Faithful and Predictable Ports

• Overview and Definition:
• Mimic the desktop experience to

provide:
• Learnability
• Discoverability

• Completeness is critical
• We must capture this moment in time

41

Faithful and Predictable Ports
Example: Keyboard Access

• Hitting Esc hides a menu
• Arrow keys

– Up and Down will go over the top
– Right to expand submenu OR to move

to the next item in the menu bar
– Left to collapse a submenu OR to

move to the next item in a menu bar
• Tabbing through items

42

Faithful and Predictable Ports
Example: Resizability

• Declare font size in relative units
• Use <iframe> to allow DHTML

widgets to response to changes to the
font size
• Create and insert into the page via

JavaScript
• Height and width declared in EM units
• Add a “resize” event listener

43

Faithful and Predictable Ports
Example: Viewport Positioning

Problem: Menus positioned outside the boundaries of the
browser viewport require extra scrolling.

44

Faithful and Predictable Ports
Example: Viewport Positioning

Solution: Menus that automatically remain inside the
browser viewport boundaries are more usable to all users.

45

Faithful and Predictable Ports
WAI-ARIA Roles & States

• Utilizes powerful and well-understood
desktop API

• Map controls, events, roles and states
directly to powerful and well-
understood desktop accessibility APIs

• Standard and predictable enrichment
of markup

• Allows ARIA on top of RIA

46

Faithful and Predictable Ports:
Benefits

• More options for everybody
• Better discoverability
• Better usability
• Supports many working styles
• Establish the new platform

47

Faithful and Predictable Ports:
Drawbacks

• Isn’t always easy
• Seems heavier and/or more complex
• Not always the path of least resistance

48

Questions

